Определение критической толщины и RC задержки сигнала металлизации тонких пленок

Алиев С.А., Ыбыраев Е.М., студенты каф. ФЭ

Аннотация

Определена критическая толщина и RC задержка сигнала металлизации тонких пленок, осаждаемые методом электронно-лучевого напыления. Построены зависимости удельного поверхностного сопротивления от толщины пленки и зависимости времени RC задержки при уменьшении минимальной ширины и при увеличении толщины металлизации.

Введение

На всем протяжении истории развития технологии кремниевых интегральных схем основной ее тенденцией является уменьшение размера элементов. Главная причина существования данной тенденции на современном этапе наноэлектроники — это увеличение быстродействия цифровой интегральной схемы благодаря уменьшению толщины транзисторов. Уменьшение размеров элементов приводит к росту *RC*- задержки сигнала, так как увеличиваются сопротивление проводников из-за сокращения их площади поперечного сечения, увеличение длины и емкости, из-за уменьшения расстояния между соседними проводниками. [1]

Экспериментальная часть

В данной работе были использованы пленки алюминия и титана в диапазоне толщин от 10 до 100 нм, полученные методом электронно-лучевого осаждения в вакууме. В работе основное внимание было уделено исследованию удельного поверхностного и объемного сопротивления, которое, в процессе минимизации металлизации возрастает с уменьшением толщины проводника. Ниже приведены зависимости удельного поверхностного сопротивления алюминия и титана от толщины d (рис. 1,2) и зависимость сопротивления резисторов из титана от толщины d (рис. 3).

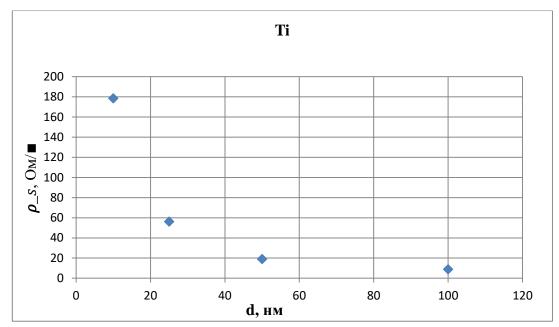


Рисунок 1 — Зависимость удельного поверхностного сопротивления титана от толщины плёнки

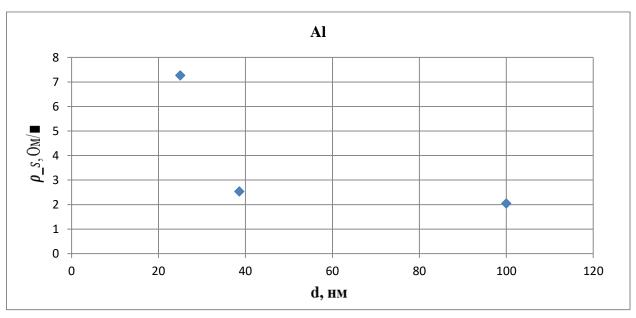


Рисунок 2 — Зависимость удельного поверхностного сопротивления алюминия от толщины плёнки

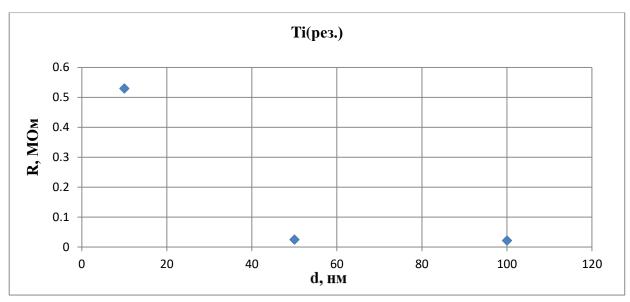


Рисунок 3 — Зависимость сопротивления резисторов из титана от толщины плёнки

Рассмотрим влияние RC —задержки на КМОП-структуре с двумя n- и p-карманами выполненной по 0,18-мкм топологической норме с одним уровнем поликремния и шестью уровнями алюминиевой металлизации (AlCu (0,5% Cu) с подслоем Ti. Конструктивнотехнологические требования к металлизации для КМОП-структуры представлены в табл. 1 [2].

Таблица 1 – Топологическая норма 0,18 мкм

Топологический слой	Топологическая норма 0,18 мкм		
	Ширина проводника,	Толщина проводника,	Минимальное
	МКМ	МКМ	расстояние, мкм
Металл 1	0,23	0,17	0,23
Металл 2	0,28	0,22	0,28
Металл 3	0,28	0,25	0,28
Металл 4	0,28	0,25	0,28
Металл 5	0,28	0,25	0,28
Металл 6	0,44	0,35	0,46

Для оценки влияния RC цепи на время задержки сигнала уменьшалась минимальное расстояние.

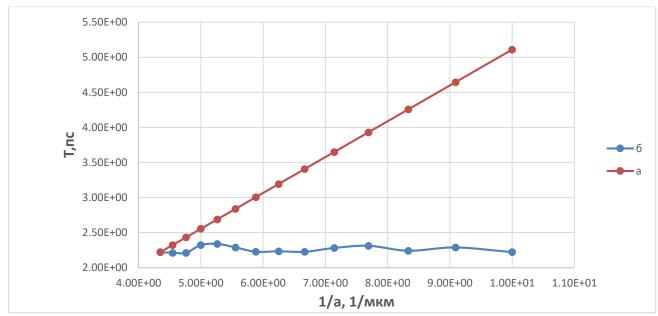


Рисунок 4 — зависимость 1/а от времени *RC* задержки а — при уменьшениях минимального расстояния б — при увеличении длины металлизации

Заключение

Из рисунков 1,2 и 3 были определены примерные критические толщины, меньше которых не рекомендуется изготавливать плёнки, так как сопротивление будет резко увеличиваться.

 $d_{\text{крит}} = 20$ нм (плёнка титана)

 $d_{\text{крит}} = 35$ нм (плёнка алюминия)

 $d_{\text{крит}} = 20$ нм (резистивная плёнка титана)

Данная зависимость (рисунок 4 а) наглядно показывает, как растет время RC – задержки с уменьшением минимального расстояния. Для того чтобы привести время RC – задержки к изначальному значению (до изменения минимального расстояния) следует увеличить ширину металлизации (рисунок 4 б).

Список литературы

- 1 Данилина, Т.И. Технология тонкопленочных микросхем / Т.И. Данилина. Томск: ТУСУР, 2005. – 183 с.
- 2 Строгонов, А.С., Цыбин, С.В. Учет резистивно емкостных эффектов при проектировании цифровых БИС // Компоненты и технологии 2010. №9 с 141-144