ПРОГРАММНЫЙ КОМПЛЕКС СИСТЕМЫ ПРОГНОЗИРОВАНИЯ ХАРАКТЕРИСТИК СВЧ РАДИОВОЛН

М.А. Колединцева – студентка 5 курса, группа122-2

А.В. Могильников – студент 4 курса, группа123-3

Научный руководитель Ю.П.Акулиничев, профессор каф.РТС, д.т.н., г.Томск, ТУСУР, ayup63@mail.ru

Целью всего проекта является анализ различных сеточных методов численного решения параболического волнового уравнения и разработка пакета программ для расчета характеристик СВЧ радиоволн при их распространении в тропосфере.

Предлагается использовать более корректные значения коэффициентов передачи гармоник ряда Фурье для использования при численном решении параболического волнового уравнения. Проведено сравнение с результатами тестовых расчетов, показавшее, что при распространении волн в широком секторе углов возможно уменьшение СКО расчета даже в несколько раз без увеличения вычислительных затрат.

Введение

Скорость вычислений современных компьютеров позволяет применять численные методы решения стандартного параболического волнового уравнения (ПУ) в декартовой системе координат (x, y, z) над плоской поверхностью Земли [1, 2] для поля, возбужденного передающей антенной и распространяющегося в неоднородной тропосфере.

$$2ik\frac{\partial U(x,y,z)}{\partial x} + \frac{\partial^2 U(x,y,z)}{\partial y^2} + \frac{\partial^2 U(x,y,z)}{\partial z^2} + k^2 (\varepsilon(x,y,z) - 1)U(x,y,z) = 0, \qquad (1)$$

где $U(x, y, z) = E(x, y, z) \exp(-ikx)$ – комплексная огибающая напряженности E(x, y, z)электрического поля заданной поляризации.

Стандартное ПУ описывает лишь волны, распространяющиеся вперед под малыми углами (не более10...15°[2]) по отношению к направлению оси *Ox*.

Точным решением однородного ($\varepsilon = 1$) ПУ является плоская волна, если она записана в приближении Френеля (для простоты рассматривается двумерное ПУ в координатах xOy)

$$U(x, y) = A \cdot \exp\left[ik\left(\beta y - \frac{\beta^2 x}{2}\right)\right],\tag{2}$$

где *β* – угол между вектором Пойнтинга и осью *Ох*.

Общепринятым является использование предположения о том, что размеры неоднородностей тропосферы и подстилающей поверхности по горизонтали поперек трассы существенно превышают радиус первой зоны Френеля, поэтому зависимость напряженности поля от переменной z можно учесть аналитически, а численный расчет проводить с использованием двумерного ПУ в координатах xOy [1, 2, 3].

С целью сокращения вычислительных затрат и почти без потери точности общепринятым стало использование метода быстрого преобразования Фурье (БПФ) с расщеплением [1 – 5]

$$\mathbf{u}(x+\Delta x) = \mathbf{L}\mathbf{E}\mathbf{F}^{\mathbf{I}}\mathbf{\Lambda}\mathbf{F}\mathbf{u}(x), \qquad (3)$$

где $\mathbf{u}(x)$ и $\mathbf{u}(x+\Delta x)$ – векторы-столбцы N отсчетов поля в узлах прямоугольной сетки с ячейками $\Delta x \cdot \Delta y$ на расстояниях x и Δx от источника соответственно;

F и \mathbf{F}^{-1} – матрицы прямого и обратного БП Φ ;

Л – диагональная матрица коэффициентов передачи для гармоник ряда Фурье (плоских волн);

Е – диагональная матрица, учитывающая неоднородности среды;

L – диагональная матрица, описывающая искусственный поглощающий слой.

Ошибки метода и способ их уменьшения

Традиционно элементы матрицы Λ находят путем формального использования соотношения (2)

 $\Lambda_{ii} = \exp(-0.5 \ i \ k \beta_i^2 \Delta x) \tag{4}$

Если бы область расчета имела бесконечные размеры, то при распространении одной плоской волны на ее входе имелась бы одна плоская волна на ее выходе. Однако расчетная область имеет конечные размеры и на входе учитывается не бесконечная плоская волна, а лишь ее отрезок длиной, равной протяженности Η области расчета по Из-за координате y. этого для волн, распространяющихся под углами, отличными $\beta_i = \pm i\lambda/(N\Delta y)$ при $0 \leq j \leq N/2$, от возникают амплитудные и фазовые ошибки [6].

Чтобы учесть, что на некотором расстоянии $x_{\text{вых}}(\beta) \approx H/\beta$ отрезок плоской

волны полностью выходит из области расчета (рис.1), было предложено отличное от (4) выражение для коэффициентов передачи гармоник ряда Фурье $\Lambda_{ii} = K(\beta_i)$:

$$K(\beta_{j}) = \begin{cases} \left(1 - \frac{x}{x_{\text{вых}}\left(\beta_{j}\right)}\right) \exp(-0,5ik\beta_{j}^{2}\Delta x), & x < x_{\text{вых}}\left(\beta_{j}\right), \\ 0, & x \ge x_{\text{выx}}\left(\beta_{j}\right). \end{cases}$$
(5)

Проведенные тестовые расчеты (приложение А) показали, что для большинства углов аппроксимация (5) существенно точнее, чем традиционная формула (4), в соответствии с которой всегда $|\Lambda_{jj}|=1$. При проведении тестовых расчетов поперечный размер области расчета принимался много больше *H* (то есть, эту область можно считать безграничной даже без применения искусственных поглощающих слоев).

В выражении (5) находится наилучшее значение коэффициента передачи только для основной гармоники – той плоской волны, которая подавалась на вход. Но при ее усечении появляется множество других гармоник, что является еще одной причиной появления ошибок. В тестовом расчете наличие этих гармоник учитывается, здесь выигрыш при больших значениях β может составлять десятки и даже сотни процентов (приложение А). Но этот выигрыш показан лишь для случая, когда расчет поля на расстоянии *x* от источника излучения производится однократным применением метода (3).

На практике же необходимо учитывать неоднородности среды на трассе распространения волны, для этого трассу делят на большое количество слоев и проводят расчет поля в каждом из них, принимая отчеты поля предыдущего слоя за входные данные. Поэтому были произведены расчеты среднеквадратической ошибки расчета поля по отношению к эталонному расчету при использовании традиционных и предложенных значений коэффициентов при различном количестве шагов по дальности (приложение A). Эти расчеты показали, что даже при многократном использовании предложенные коэффициенты (5) дают выигрыш в точности расчета поля в десятки и даже тысячи (при большом числе шагов по дальности) процентов по сравнению с расчетом при использовании традиционных коэффициентов (4).

Заключение

Предложен простой способ вычисления коэффициентов передачи гармоник ряда Фурье для численного решения ПУ методом БПФ. При этом точность вычисления значений поля повышается на тысячи процентов без изменения алгоритма вычисления и без всякого увеличения вычислительных затрат.

Однако, представленные расчеты были проведены без использования каких-либо поглощающих слоев, которые обычно применяются на практике. К тому же, в предлагаемом способе никак не учитывают уменьшение с дальностью коэффициента передачи для гармоники с нулевым углом распространения. Для такой гармоники модуль коэффициента передачи пока по-прежнему полагался равным единице.

Литература

1 Levy M. Parabolic equation methods for electromagnetic wave propagation // IEE. 2000. 336 p.

2 Kuttler J.R. and G.D. Dockery. Theoretical description of parabolic approximation / Fourier split - step method of representing electromagnetic propagation in the troposphere // Radio Science. -1991. - V. 26, N 2. -P. 381 - 393.

3 Barrios A.E. A Terrain Parabolic Equation Model for Propagation in the Troposphere // IEEE Trans. on Ant. and Prop. - 1994. - V. 42, № 1. - P.90-98.

4 Dockery G.D., Kuttler J.R. An Improved Impedance-Boundary Algorithm for Fourier Split-Step Solutions of the Parabolic Wave Equation. // IEEE Trans. on Antennas and Propagation. -1996. - V. 44, No 12. -P. 1592-1599.

5 Самарский А.В. Введение в теорию разностных схем. – М.: Наука, 1978. – 552 с.

6 Акулиничев Ю.П, Колединцева М.А., Могильников А.В. Коррекция применения метода БПФ для численного решения параболического волнового уравнения. [Электронный pecypc] – Режим доступа: http://symp.iao.ru/files/symp/rwp/25/abstr_8303.pdf

Зависимости СКО при вычислении значений поля для традиционного (сплошная линия) и предлагаемого (пунктирная линия) методов от угла падения усеченной плоской волны при различных отношениях *x*/*x_{max}=0.39*; 0.78; 1.95

Зависимости относительной величины СКО при вычислении значений поля для традиционного (сплошная линия) и предлагаемого (пунктирная линия) методов для гармоник с разными номерами s_i усеченной плоской волны при различном количестве шагов по дальности Nx, и при β_{max} =0.05 рад.