ПОСТРОЕНИЕ НЕЧЕТКИХ АППРОКСИМАТОРОВ ПАРАМЕТРОВ ПЛАЗМЕННОГО ИСТОЧНИКА ПРИ ИМПУЛЬСНОЙ ЭЛЕКТРОННО-ЛУЧЕВОЙ ОБРАБОТКЕ В ФОРВАКУУМНОМ ДИАПАЗОНЕ ДАВЛЕНИЙ *С.С. САМСОНОВ*

Научный руководитель И.А. Ходашинский, профессор каф. КИБЭВС г. Томск, ТУСУР

Проект ГПО КИБЭВС-1211 – Нечёткие системы

Введение

Значимость темы исследования определена тем, что внедрение новых материалов (керамики и полимеров), непроводящих электрический ток в обычных условиях, требует их обработки новым методом - импульсной электронно-лучевой обработкой в форвакуумном диапазоне давлений (3–100 Па). Важнейшим параметром этой обработки является однородность плотности тока по сечению пучка. Однако, протекающие в электронных пучках форвакуумных диапазонов давлений процессы мало изучены и подбор параметров плазменного источника для достижения однородности плотности тока затруднен. Эти затруднения возможно решить путем построения аппроксимирующих кривых к полученным экспериментальным данным, используя новый метод оптимизации базы правил нечеткой системы [1].

Описание методики получения данных

Эксперименты проводились с использованием импульсного плазменного электронного источника, функционирующего в форвакуумном диапазоне давлений [1]. Для изучения распределений плотности тока использовалась тепловизионная методика. Для этого на пути электронного пучка в пространстве дрейфа устанавливалась тонкая (0,5 мм) алюминиевая пластина. Электронный пучок, попадая на пластину, нагревал её. Полученное распределение температуры тыловой стороны пластины фиксировалось с помощью тепловизора Fluke 200Ti в режиме видеосъемки с частотой 9 кадров/с. Использование тепловизионной методики позволяет за один импульс фиксировать распределения плотности энергии (тока) по всему сечению пучка.

Описание нечеткой системы типа Такаги-Сугено

В данной работе мы будем рассматривать построение нечеткой модели на основе таблицы наблюдений. Как указано в публикации [3], нечеткая система может быть представлена как:

$$y = f(\mathbf{x}, \, \mathbf{\theta}, \, \mathbf{D}),$$

где **х** – входной вектор, $\mathbf{\theta} = ||\theta_1, ..., \theta_N||$ — вектор параметров антецедентов, *у* — скалярный выход системы, **D** — вектор параметров консеквентов.

Нечеткая система строится на множестве нечетких правил типа «ЕСЛИ-ТО». В нечеткой системе типа Такаги-Сугено *i*-ое правило имеет следующий вид:

IF $x_1 = A_{1i}$ AND $x_2 = A_{2i}$ AND ... AND $x_n = A_{ni}$ THEN $y = d_{0i} + d_{1i}x_1 + ... + d_{ni}x_n$, где A_{ij} — лингвистический терм, которым оценивается переменная x_i ; выход *y* задается линейной функцией от входных переменных[4].

Выход нечеткого аппроксиматора определяется следующим образом:

$$f(\mathbf{x}; \mathbf{\theta}; \mathbf{D}) = \frac{\sum_{i=1}^{R} \prod_{j=1}^{n} \mu_{A_{ij}}(x_{ij}) * (d_{0i} + d_{1i}x_1 + \dots + d_{ni} * x_n)}{\sum_{i=1}^{R} \prod_{j=1}^{n} \mu_{A_{ij}}(x_{ij})}$$

где *R* – число правил, *n* – количество входных переменных.

Пусть имеется таблица наблюдений $\{(\underline{x}_p; t_p), p = 1, ..., m\}$, тогда критерий качества аппроксимации может быть выражен среднеквадратической функцией ошибки:

$$MSE(\mathbf{\theta}) = \frac{1}{m} * \sum_{p=1}^{m} (t_p - f(\mathbf{x}_p, \mathbf{\theta}; \mathbf{D}))^2.$$

Описание алгоритма оптимизации базы правил

«Алгоритм обезьян» (АО) – метаэвристический алгоритм оптимизации, имитирующий передвижение популяции обезьян в горной местности [3]. Семь основных этапов алгоритма, применительно к построению нечеткого аппроксиматора, рассмотрены ниже.

1. Представление решения

Сначала определяется M – численность популяции обезьян, в которой позиция каждой *i*-оя обезьяны представляет решение, задаваемое вектором $\mathbf{\theta}_i = (\theta_{i1}, \theta_{i2}, ..., \theta_{iD}), i = 1, ..., M$.

2. Инициализация популяции

Возможные позиции обезьян в *D*-мерном гиперкубе генерируются случайным образом либо решения-позиции задаются пользователем, возможна и смешанная стратегия инициализации, когда часть популяции задается пользователем, а другая часть генерируется случайным образом.

3. Движение вверх

I. Для каждой *i*-ой обезьяны генерируется вектор $\Delta \theta_i = (\Delta \theta_{i1}, \Delta \theta_{i2}, ..., \Delta \theta_{iD}),$

где $\Delta \theta_{ij} = \begin{cases} a, & \text{если } rand(0;1) \ge 0,5 \\ -a, & \text{если } rand(0;1) < 0,5 \end{cases}$, i = 1,...,M, j = 1,...,D, a > 0 - длина шага.

II. Вычислить
$$E'_{ij}(\boldsymbol{\theta}_i) = \frac{E(\boldsymbol{\theta}_i + \Delta \boldsymbol{\theta}_i) - E(\boldsymbol{\theta}_i - \Delta \boldsymbol{\theta}_i)}{2\Delta \theta_{ii}}, \quad i = 1,...,M, \quad j = 1,...,D.$$

Вектор $\mathbf{E}'_{i}(\boldsymbol{\theta}_{i}) = (E'_{i1}(\boldsymbol{\theta}_{i}), E'_{i2}(\boldsymbol{\theta}_{i}), ..., E'_{iD}(\boldsymbol{\theta}_{i}))$ является псевдо-градиентом функции пригодности $E(\cdot)$ в точке $\boldsymbol{\theta}_{i}$.

III. Вычислить $z_i = \theta_{ij} + a \cdot \text{sign}(E'_{ij}(\mathbf{\theta}_i))$ и сформировать вектор $\mathbf{z} = (z_1, z_2, ..., z_D)$.

IV. Если полученный вектор-решение **z** не противоречит ограничениям построения нечеткого классификатора, то вектор θ_i заменяется вектором **z**, иначе вектор θ_i остаётся неизменным.

V. Шаги I - IV повторять заданное число раз.

4. Локальный прыжок

I. Из случайно сгенерированных равномерно распределённых действительных чисел из диапазона ($\theta_{ij} - b$, $\theta_{ij} + b$) сформировать вектор $\mathbf{z} = (z_1, z_2, ..., z_D)$, здесь b – параметр, характеризующий способность обезьяны вести наблюдения.

II. Если значение $E(\mathbf{z}) > E(\mathbf{\theta}_i)$ и вектор **z** не противоречит требованиям построения нечеткого классификатора, то вектор $\mathbf{\theta}_i$ заменяется вектором **z**.

III. Шаги I - II повторять заданное число раз.

5. Глобальный прыжок

I. Сгенерировать случайное равномерно распределённое действительное число α из интервала [c, d], где c, d – параметры алгоритма.

II. Вычислить $z_j = \theta_{ij} + \alpha \cdot (\rho_j - \theta_{ij}), j = 1, 2, ..., D,$

где
$$\rho_j = \frac{\sum_{i=1}^{M} \theta_{ij}}{M}, \quad i = 1,...,M, \quad j = 1,...,D.$$

III. Если полученный вектор $\mathbf{z} = (z_1, z_2, ..., z_D)$ не противоречит требованиям построения нечеткого классификатора и значение $E(\mathbf{z}) > E(\mathbf{\theta}_i)$, то вектор $\mathbf{\theta}_i$ заменяется вектором \mathbf{z} , иначе вектор $\mathbf{\theta}_i$ остаётся неизменным.

IV. Шаги I - III повторять заданное число раз.

6. Повтор N раз операторов движения вверх, локального и глобального прыжка 7. Вывод лучшего решения

Результаты

Для оценки эффективности нечеткого аппроксиматора, построенного с помощью приведенного алгоритма, были проведены тесты на наборах данных из репозитория KEEL с использованием механизма кросс-валидации. При тестировании на наборах данных KEEL, база правил нечёткой системы генерировалась с помощью динамического разбиения входного

пространства признаков, оптимизировалась алгоритмом обезьян, консеквенты оптимизировались рекуррентным методом наименьших квадратов. Результаты проведенных экспериментов были сопоставлены с результатами работы других алгоритмов из работы [4] и представлены в таблице 1. Как можно видеть из таблицы, результаты, полученные с помощью алгоритма обезьян, сравнимы с результатами работы других алгоритмов оптимизации.

В таблице 2 представлена оценка аппроксиматора на данных с экспериментальной установки.

		1	5				/ \					
	ANFIS-SUB			LEL-TSK			METSK-HD			Monkey		
Data	R	Tra	tst	R	tra	Tst	R	tra	tst	R	tra	tst
Pla	114	1.011	1.504	66	1.032	1.188	19.2	1.057	1.136	16.2	1.1506	1.1755
Qua	40.4	0.015	0.155	127	0.0151	0.0308	18.3	0.0171	0.0181	14.6	0.0177	0.018
Ele2	2	8208	8525	44.8	2928	3752	36.9	2270	3192	14.4	7683.8	8097.7
Dee	290.6	3087	2083	57.8	0.662	0.682	50.6	0.08	0.103	63.2	0.1192	0.1611

Таблица 1 – Результаты аппроксимации на данных из репозитория КЕЕL

Таблица 2 – Результаты аппроксимации экспериментальных данных

	RMS	δE	MS		
	Обучающая	Тестовая	Обучающая	Тестовая	Rules
plasmsks-1	0.013088	0.020530	0.085652	0.052684	
plasmsks-2	0.011646	0.026606	0.067812	0.088482	
plasmsks-3	0.011485	0.023741	0.065955	0.070454	10
plasmsks-4	0.012771	0.039303	0.081544	0.193089	40
plasmsks-5	0.012005	0.014628	0.072058	0.026748	
Среднее значение	0.012199	0.024961	0.074604	0.086291	
СКО	0.000584	0.006394	0.007195	0.043595	

Заключение

В результате выполнения данной работы с плазменного источника, используемого для импульсной электронно-лучевой обработки в форвакуумном диапазоне давлений были получены и обработаны первичные данные, на основе которых в последствии была построена нечеткая система типа Такаги-Сугено используя алгоритм генерации структуры с функциями принадлежности треугольного типа, основанный на динамическом разбиении входного пространства. База правил полученной системы была оптимизирована с помощью алгоритма обезьян и затем оценена. В дальнейшем планируется применить другие алгоритмы генерации структуры для полученной нечеткой системы.

Список использованных источников

1) Burdovitsin, V.A. Surface structure of alumina ceramics during irradiation by a pulsed electron beam // V.A. Burdovitsin, E.S. Dvilis, A.V. Medovnik, E.M. Oks, O.L. Khasanov, Yu.G. Yushkov // Technical Physics. – 2013. – V. 58, Iss. 1. – P. 111–113;

2) Ходашинский, И.А. Методика построения компактных и точных нечетких систем типа Такаги–Сугено / И.А. Ходашинский, К.С. Сарин // Доклады ТУСУРА. – 2016. – V. 19, No. 1. – Р. 50–56;

3) Zhao, R. Monkey Algorithm for Global Numerical Optimization / R. Zhao, W. Tang // Journal of Uncertain Systems. – 2008. – V. 2, No. 3. – P.165–176.

4) Gacto, M.J. METSK-HD: A multiobjective evolutionary algorithm to learn accurate TSK-fuzzy systems in high-dimensional and large-scale regression problems / M.J. Gacto, M. Galende, R. Alcalá, F. Herrera // Information Sciences. – 2014. – Vol. 276. – P. 63–79.