Особенности электронно-лучевого испарения керамики на основе оксида алюминия в форвакуумной области давлений

Авторы: С. С. Хващевская, студентка каф. Φ Э, А. А. Кузнецов, студент каф. ЭП, Φ ЭТ, ТУСУР

Научный руководитель: А. С. Климов, к.т.н. каф. физики

Проект ГПО ФЭ-1604 Электронно-лучевая обработка материалов в форвакуумной области давлений

Введение

Одной из основных особенностей электронно-лучевого облучения материалов является возможность достижения высоких значений плотности мощности, по этому параметру электронный пучок намного превосходит другие известные источники нагрева [1], уступая в некоторых случаях лишь лазерному излучению. Концентрация сравнительно высокой мощности на малой площади обусловливает локальный нагрев материалов, что особенно важно при обработке различных тугоплавких металлов и сплавов с минимальным изменением исходной структуры материала в зоне термического воздействия. В отличие от металлов электронно-лучевая обработка непроводящих материалов (диэлектриков) имеет свои особенности, связанные в первую очередь с необходимостью нейтрализации заряда приносимого электронами пучка на облучаемую непроводящую поверхность [2]. Одним из решений данной проблемы является использование форвакуумных плазменных электронных источников, способных генерировать электронные пучки в области повышенных, по сравнению с традиционной для электронных источников областью, давлений. Компенсация отрицательного поверхностного заряда при давлениях 5-20 Па осуществляется как за счет потока ионов из пучковой плазмы, а также за счет потока из плазмы несамостоятельного разряда, возникающего между облучаемой мишенью и заземленными стенками вакуумной Эффективность электронного [3]. передачи энергии пучка диэлектрической мишени в форвакуумной области давлений продемонстрирована на примере сварки и плавки керамических изделий [4,5], упрочнения поверхности [6]. Другим применением электронного пучка в области повышенных давлений может являться испарение непроводящих (в частности керамических) материалов с последующим осаждением покрытий в вакууме. Ускоренные электроны пучка при попадании на испаряемый материал передают свою кинетическую энергию и вызывают значительный нагрев тонкого поверхностного слоя, толщина которого не превышает единиц микрометров. А поскольку испарение материала происходит именно с его поверхности, то такой способ нагрева наиболее эффективен по сравнению с другими его видами. Возможность непосредственной электронно-лучевой обработки диэлектрических материалов является ключевой особенностью форвакуумных плазменных электронных источников, а применительно к испарению диэлектриков возможна реализация и бестигельного испарения. Таким образом, эффективность процесса испарения может быть значительно повышена. Цель настоящей работы заключалась в реализации процесса и исследовании особенностей электронно-лучевого испарения диэлектрических (в частности керамических) материалов в форвакуумной области давлений.

Техника эксперимента

Основными исследуемыми в работе параметрами испарения керамики являлась зависимость толщины осаждаемой пленки от пространственного расположения подложки, на которую происходило напыление. В экспериментах подложки располагались на различном расстоянии от испаряемой мишени, а также на разных углах от оси пучка при фиксированном расстоянии. Эксперименты проводились на вакуумной установке (рис. 1), оснащенной плазменным электронным источником на основе разряда с полым катодом цилиндрической

формы. Электронный источник формировал узкосфокусированный электронный пучок в условиях форвакуума. Рабочее давление в вакуумной камере составляло 10 Па и поддерживалось напуском газа непосредственно в камеру. Источник функционировал в изобарическом режиме, т.е. без напуска газа в катодную полость. Такой режим характерен для форвакуумных плазменных электронных источников и определяет их основную особенность.

В качестве испаряемого материала использовалась керамика на основе оксида алюминия — ВК94-1. Испаряемый образец в виде диска диаметром 14 мм и высотой 5 мм устанавливался в углубление в графитовом тигле, который свою очередь помещался в вакуумную камеру и располагался в плоскости падения электронного пучка на его оси.

Рис. 1. Схема эксперимента. 1 — полый катод; 2 — анод; 3 — эмиссионный электрод (перфорированная пластина); 4 — ускоряющий электрод (экстрактор), 5 —фокусирующий соленоид; 6 — магнитная система отклонения; 7 — электронный пучок; 8 —подложки; 9 — испаряемый образец; 10 — графитовый держатель, 11 — вакуумная камера

Обеспечение достаточной для испарения керамики величины тока пучка достигалось за счет использования эмиссии из 120 отверстий диаметром 0,7 мм расположенных в эмиссионном электроде (аноде) источника. При ускоряющем напряжении 10 кВ и токе пучка 50 мА плотность мощности на мишени достигала 800 Bt/cm^2 . Подложки размерами $15 \times 20 \text{ мм}$ из стекла толщиной 2 мм располагались на расстояниях от испаряемой мишени кратных 2,5–3 см и при фиксированном угле между осью пучка и направлением на центр подложки, рис. 1. Расстояние до первой подложки составляло 4,5 см, до последней 19,5 см. С целью предотвращения разрушения образца за счет термомеханических напряжений при электронноравномерный процессу испарения предшествовал облучении, расфокусированным электронным пучком в течение 10 минут. Через 20 минут электронный пучок фокусировался на образце и при плотности мощности 600 Вт/см² начинался процесс интенсивного испарения керамики. Испарение, при неизменном уровне плотности мощности пучка, занимало 20 минут.

Одним из основных параметров, характеризующих испаритель является пространственное распределение паров испаряемого материала. С целью определения такого распределения использовалось измерение толщины пленок, напыляемых на подложки, равномерно расположенные на внутренней поверхности полусферы, в центре которой располагается испаряемый образец, рис. 2.

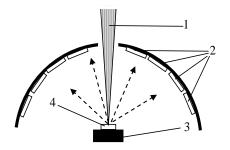


Рис. 2. Схема измерения углового распределения испаренного материала. 1 – электронный пучок; 2 – подложки; 3 – графитовый тигель; 4 – керамический образец

По известному углу между осью пучка и направлением на центр подложки, а также измеренной толщине пленки строилось угловое распределение толщины. Толщина пленок определялась с помощью микроинтерферометра МИИ-4М по стандартной методике.

Результаты работы и их анализ

Процесс испарения различных материалов в высоком вакууме достаточно хорошо изучен. В работе [7] рассмотрено электронно-лучевое испарение из точечного источника, различных проволочных источников, а также источника типа двумерной площадки. В случае испарения из двумерной площадки, имеющем место в условиях настоящего эксперимента, распределение толщины напылённого слоя в зависимости от расстояния, считается подчиняющимся закону Кнудсена (закону косинусов):

$$h = \frac{m}{\pi \rho} \cdot \frac{\cos^2 \theta}{r^2} \tag{1}$$

где h — толщина пленки на подложке, м; m — масса материала, испаряющегося в единицу времени, кг/сек; ρ — плотность испаряемого материала, кг/м⁻³; r — расстояние от источника до подложки, м; θ — угол между нормалью и направлением на центр подложки.

Согласно этому закону в единицу времени на площадку единичной площади осаждается масса вещества обратно пропорциональная расстоянию от источника до подложки.

Экспериментальные исследования показали, что в случае электронно-лучевого испарения в форвакуумной области давлений толщина напыляемой пленки монотонно уменьшается с ростом расстояния от испаряемого материала до подложки, рис. 3. Точки экспериментальной зависимости ложатся ниже по сравнению с теоретическим распределением по закону косинусов (1), что может быть связано с рассеянием паров испаренного материала при движении их до подложки в условиях повышенного давления в вакуумной камере.

Еще одним результатом, отличающим электронно-лучевое испарение в форвакуумной области давлений, является более равномерное угловое распределение испаренного материала.

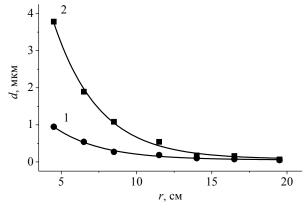


Рис. 3. Зависимость толщины пленки от расстояния до источника. Давление $10~\Pi a.~1-в$ атмосфере кислорода, 2-в остаточной атмосфере вакуумной камеры.

На рисунке 4 представлен результат измерения толщины пленок, осаждаемых на подложках, расположенных на внутренней области полусферической поверхности, в центре которой расположен испаряемый образец.

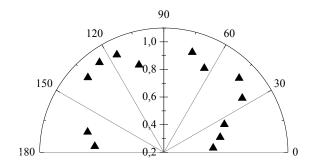


Рис. 4. Угловое распределение паров испаренного материала. Плотность мощности 600 Bт/см², давление 8 Па.

Основная масса испаренного материала достигает подложки и осаждается достаточно равномерно вплоть до углов $\pm 45^0$ от оси пучка, рис. 5

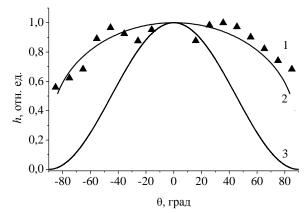


Рис. 5. Угловое распределение толщины пленки h. 1 — экспериментальные данные; 2 — аппроксимация экспериментальных данных; 3 — расчет по закону косинусов

На том же рисунке для сравнения приведено угловое распределение, рассчитанное по закону косинуса, кривая 3. Изменение параметров электронного пучка практически не влияет на вид распределения.

Заключение

Электронно-лучевое облучение керамических материалов в форвакуумной области давлений позволяет производить их испарение с последующим осаждением из паровой фазы. При этом не возникает проблемы накопления отрицательного заряда на облучаемой поверхности. Толщина получаемых покрытий более равномерная по сравнению с напылением в высоком вакууме. Это обстоятельство может быть связано с рассеянием частиц испаренного вещества на молекулах газа при высоком давлении.

Список использованных источников

- 1. Рыкалин, Н. Н. Основы электронно-лучевой обработки материалов. М.: Машиностроение, 1978. 239 с.
- 2. Филачев, А. М. Проблемы электронно-лучевой обработки диэлектриков / А. М. Филачев,
- Б. И. Фукс // Прикладная физика. 1996. № 3. С. 39–46.

- 3. Electron beam treatment of non-conducting materials by a fore-pump-pressure plasma-cathode electron beam source / V. A. Burdovitsin, A. S. Klimov, A. V. Medovnik, E. M. Oks // Plasma Sources Sci. Technol. − 2010. − № 19. − P. 055003.
- 4. Бурдовицин В. А., Климов А. С., Окс Е. М. О возможности электронно-лучевой обработки диэлектриков плазменным источником электронов в форвакуумной области давлений //Письма в ЖТФ. -2009.- Т. 35.- №. 11.- С. 61-66.
- 5. Зенин А. А. Электронно-лучевая пайка алюмооксидной керамики с металлом с применением форвакуумного плазменного источника электронов / А. А. Зенин, А. С. Климов // Доклады Томского государственного университета систем управления и радиоэлектроники. − 2013. − № 1 (27). С. 10-13.
- 6. Бурдовицин В.А. Модификация поверхности керамики импульсным электронным пучком, генерируемым форвакуумным плазменным источником / В.А. Бурдовицин, Е.М. Окс, Е.В. Скробов, Ю.Г. Юшков // Перспективные материалы. − 2011. − №6. − с. 1-6.
- 7. Holland L., Steckelmacher W. // Vacuum. 1952. Vol. 2. N 4. P. 346.