

NAUKA O+

POCT UP 2021

Каталог Проектов

Уверен, что все участники выставки «Рост.UP» извлекут для себя много полезного

Рулевский Виктор Михайлович

Ректор ТУСУРа

оступно рассказать о своей разработке, интересно и ярко ее представить, а также ответить на самые непредсказуемые вопросы – это очень важно. Не меньше, чем придумать её или даже воплотить в жизнь. Немногие умеют грамотно представлять себя и свою работу, но почти все могут научиться. Приобрести такой полезный опыт помогает наша традиционная выставка научных достижений молодых учёных «Рост.UP».

2021 год в России был объявлен Годом науки и технологий, поэтому организаторы провели очень строгий отбор экспонатов-участников. На выставке в очном и онлайн форматах будут представлены разработки по робототехнике, новым медицинским технологиям, 3D-печати, современным материалам и многому другому. Будет даже полноценная сити-ферма от томских школьников с баклажанами, грибами и земляникой!

Уверен, что все участники выставки «Рост. UP» извлекут для себя много полезного: обменяются идеями, найдут новых друзей и единомышленников, потренируются в самопрезентации, а самые удачливые еще и крутые гаджеты в подарок получат! Но, наверное, это не главное. «Отмечать успех – это прекрасно, но гораздо важнее учесть уроки неудачи», - очень хорошо сказал Билл Гейтс. Полностью поддерживаю эту мысль и желаю молодым ученым не переставать учиться, развиваться и совершенствоваться во всем.

«Рост.UP» – открытая площадка с самого момента своего основания

Лощилов Антон Геннадьевич

Проректор по научной работе и инновациям ТУСУРа

Очень радует, что неизменно каждый год выставка научных достижений молодых учёных «Рост.UP» собирает несколько десятков участников из университетов, лицеев и школ самых разных городов и регионов нашей страны. Нынешний – не исключение. География наших участников включает Томск, Орел, Ульяновск, Новосибирск, Архангельск, Великий Новгород и даже Петропавловск-Камчатский!

Что касается формата мероприятия. В прошлом году из-за сложной ситуации пандемии мы проводили нашу выставку полностью онлайн, но в этом ситуация позволяет с соблюдением всех необходимых мер представить экспонаты томских молодых участников – на одной площадке, а за демонстрацией разработок участников из других городов понаблюдать в ходе онлайн-подключений.

Такой формат позволит смотреть, обсуждать, задавать вопросы и комментировать онлайн всем желающим. Ведь «Рост.UP» – открытая площадка с самого момента своего основания. Мы хотим, чтобы как можно больше молодых и любопытных людей включались в процесс разработки и изобретательства, интересовались наукой, технологиями, стремились познавать новое, генерировать идеи и воплощать их в жизнь. Все участники нашей выставки уже твердо стоят на этом пути. И, я надеюсь, что благодаря таким мероприятиям, как «Рост.UP» их с каждым годом будет ещё больше!

Проекты РостUР 2021

Зыявление ранних признаков поверхностно-распространяющихся меланом с использованием компьютерных технологий	
Магнитная система для разделения стойких и аномальностойких водонефтяных эмульсий	
/стройство для определения локализации подкожной вены локтевой ямки при выполнении инфузионных вливани <mark>й</mark>	8
Разработка технического обеспечения контроля коррозионной защиты судов и морских сооружений	9
Интеллектуальные распределительные электрические сети 0,4 кВ на основе мультиконтактных коммутационных систем	10
Аппаратно-программный комплекс для прикроватной оценки функционального состояния системы гемостаза	1
Трототип коллаборативного робота-манипулятора с интегрированным техническим зрением	1
Антибактериальный полупроводниковый источник излучения	1
/становка для испытания на работоспособность систем силовых агрегатов транспортных и самоходных машин	14
3D-принтер для изготовления многослойных печатных плат	1
Фонтан с применением кумулятивного эффекта	10
Беспроводная система спортивного хронометража на основе фотоэлектрического переключателя	1
/стройство диагностики психофизиологических параметров на основе микроконтроллерной платформы Arduino	18
Разработка инструмента моделирования распределённых высокочастотных компонентов для новых радиоэлектронных систем	19
Автоматизация документооборота в организациях дополнительного образования детей детей	20
/стройство для аэрозольного напыления	2

Инструмент визуализации сквозного расчета технологической линии карботермического синтеза на базе программного комплекса КОД ТП	22
Препарат для лечения заболеваний дистального отдела конечностей у крупного рогатого скота	2
Разработка способа контроля дозовых нагрузок при облучении мелких лабораторных животных в рамках доклинических исследований	24
Система контроля уровня и плотности растворов радиохимических производств	2
Система определения стресса на ранней стадии у детей с аутизмом	26
Получение ультрадисперсного порошка магнетита на основе оксида железа методом механической активации	2 7
Комбинированный светодиодные светильники с ИК обогревателем	28
Высоковольтный импульсный модулятор	29
USRP-радиометр	30
SibGel	3
Реконфигурируемые волноводные структуры оптоэлектронных устройств на основе электрооптических кристаллов	32
Разработка методики выращивания острого перца на ситиферме	33
Промышленное культивирование грибов медицинского назначения	34
«Антиковидный» LegoMen	34
Индукция ризогенеза in vitro у эксплантов земляники	3!
Технология культивирования баклажанов в условиях ситифермы	36

Выявление ранних признаков поверхностнораспространяющихся меланом с использованием компьютерных технологий

Цель проекта

Оценка уровня диагностики меланом кожи в Новгородской области и создание неинвазивного способа раннего выявления характерных признаков активизации пигментных невусов и поверхностно-распространяющихся меланом.

Описание

Разработан аппарат для ZOOM-диагностики поверхностно распространяющихся МК — это портативный USB-микроскоп с увеличением от ***50 до *500** (для сравнения: обычно используется лишь \times 10), обладающий встроенной подсветкой и прямым подключением к компьютеру.

С помощью USB-микроскопа, транслирующего цифровое изображение предварительно окрашенного, увеличенного патологического образования на экран, стало возможным получение информации из слоев глубже сосочкового слоя.

Преимущества

- Уникальность и простота в использовании
- Возможность исследования более глубоких слоев
- Возможность применения технологии в телемедицине / дистанционно (что особенно актуально в условиях пандемии)

Автор проекта:

Рисс Мария Евгеньевна, Новгородский университет им. Ярослава Мудрого, студент

Научный руководитель:

Черенков Вячеслав Григорьевич, Новгородский университет им. Ярослава Мудрого, д.м.н., профессор кафедры госпитальной хирургии

Магнитная система для разделения стойких и аномальностойких водонефтяных эмульсий

Цель проекта

Повышение эффективности процесса разделения стойких и аномальностойких водонефтяных эмульсий при использовании магнитов с постоянным полем.

Описание

Магнитная система представляет собой конструкцию, состоящую из высоко-энергетических постоянных магнитов, включающих в себя редкоземельные металлы.

Использование одной магнитной установки способствует уменьшению концентрации, используемого при разделении деэмульгатора с 500 мг/т нефти до 50 – 70 мг/т нефти. Все это способствует сокращению эксплуатационных расходов.

Преимущества

- Экологическая безопасность
- Дешевле по сравнению с применяемыми методами разделения
- Не требует подвода электроэнергии
- Длительный срок эксплуатации
- Простота и минимальное обслуживание

Автор проекта:

Чайкина Яна Игоревна, ФГАОУ ВО «Национальный исследовательский ТПУ», магистрант

Научный руководитель:

Бешагина Евгения Владимировна, ФГАОУ ВО «Национальный исследовательский ТПУ», к.х.н., доцент

Устройство для определения локализации подкожной вены локтевой ямки при выполнении инфузионных вливаний

Цель проекта

Разработка устройства контактного типа на основе светового воздействия для повышения эффективности определения локализации подкожной вены локтевой ямки у лиц с затрудненным венозным доступом.

Характеристики

- Длина волны светодиода красного света 650 нм;
- Мощность источника излучения 1 Вт;
- Источник питания, тип АА;
- Напряжение источника питания 1,5 В;
- Напряжение на входе преобразователя 3 В;
- Количество осветительных элементов 12 шт.;
- Глубина проникновения светового потока >3 мм;
- Габаритные размеры корпуса устройства 9 х 6 х 3 мм;
- Диаметр рабочей части устройства 50 мм;
- Вес устройства **120 г.**

Автор проекта:

Червенков Дмитрий Александрович, ФГАОУ ВО C(A)ФУ имени М.В. Ломоносова, магистрант

Внешний вид рабочей части устройства

Преимущества

- Оптимальные массогабаритные характеристики
- Высокая эргономичность и ремонтопригодность
- Безопасность в использовании
- Низкая себестоимость

Научный руководитель:

Карякина Ольга Евгеньевна, ФГАОУ ВО С(А)ФУ имени М.В. Ломоносова канд.биол. наук, доцент

Разработка технического обеспечения контроля коррозионной защиты судов и морских сооружений

Цель проекта

Разработать и внедрить комплекс программно-аппаратного комплекса на судах и морских сооружения Камчатского края.

Будет создан ряд устройств, которые позволят обеспечивать непрерывный контроль за состоянием корпуса судна. Техническое обеспечение позволит осуществлять контроль качества докового ремонта судна, оценивать защищенность корпуса, а с помощью автоматизированного комплекса осуществлять непрерывный контроль за работоспособностью коррозионной защиты.

Характеристики

- Максимальное количество сканируемых электродов до 50;
- Максимальное количество индикаторов, обслуживаемых одним анализатором **1024**;
- Порт связи с компьютером **USB**;
- Потребляемый ток, не более, 150 мА;
- Напряжение внешнего источника питания постоянного тока, **B 12 ± 3**;
- Габаритные размеры анализатора **1500 X 600 X 200 мм**; масса, не более, **1500 грамм**;
- Срок службы не менее 10 лет;
- Прибор устойчиво будет работать в диапазоне температур -15 + 45 °C и при максимуме относительной влажности в 80 % при +27 °C.

Автор проекта:

Ястребов Д.П., ФГБОУ ВО «КамчатГТУ», аспирант

Научный руководитель:

Белов О.А., к.т.н., доцент, заведующий кафедры «Энергетические установки и электрооборудование судов»

Внедрение результатов проекта в натурных условиях на судне ПМ-15

Интеллектуальные распределительные электрические сети 0,4 кВ на основе мультиконтактных коммутационных систем

Цель проекта

Разработать устройства для сетевого секционирования и резервирования сельских электрических сетей 0.4 кВ.

Характеристики

- Устройства МКС предназначены для эксплуатации при следующих условиях окружающей среды:
 - температура воздуха от -40 до +55 °C,
 - наибольшая высота над уровнем моря 2000 м.
- Силовые контакты МКС смогут выдерживать ударный ток (имеют электродинамическую стойкость) 7 кА.
- Механический ресурс силовых контактов МКС-2-3В составляет **2 000 000 циклов** включения-отключения, при этом возможно произвести **600 операций в час.**
- Время включения и отключения силовых контактов МКС-2-3В составляет
 от 50-80 мс, что позволит быстро производить отключение токов КЗ и
 реализовывать такие функции автоматики, как автоматическое повторное
 включение и автоматическое включение резерва.

Автор проекта:

Лансберг Александр Александрович, Орловский ГАУ имени Н.В. Парахина, студент

Научный руководитель:

Виноградов Александр Владимирович ФГБНУ ФНАЦ ВИМ, д.т.н., доцент, ведущий научный сотрудник

Аппаратно-программный комплекс для прикроватной оценки функционального состояния системы гемостаза

Описание

Принцип действия тромбоэластографа НПТЭГ «Меднорд» основан на регистрации изменения сопротивления исследуемой среды резонансным колебаниям иглы-резонатора, закрепленной на пьезоэлектрическом элементе и опущенной в кювету с кровью пациента. Частота колебаний иглы в воздухе и в жидкости поддерживается равными автоматически.

Полезным сигналом является разность амплитуд колебаний иглы в воздухе и в жидкости.

Управление электромеханическим трактом осуществляет измерительная схема Блока регистратора, а все вычисления, вывод графиков и параметров исследований, а также управление работой прибора выполняет процессор, который использует специализированную компьютерную программу ИКС ГЕМО-5.

Главный измерительный элемент аппарата — прецизионный пьезоэлектрический датчик (ПЭД).

Преимущества

- Комплексная оценка состояния системы гемостаза
- Высокая информативность
- Система поддержки принятия решения для специалиста
- Постановка диагноза кратчайшим путем, сокращение время исследований, оценка резервных возможностей системы гемостаза
- Позволяет работать с цельной нестабилизированной кровью
- Отсутствие lag-time результаты с первой минуты исследования

Авторы проекта:

Слизевич Дмитрий Сергеевич, Жуков Егор Леонидович, аспиранты ТПУ, Исследовательская школа химических и биомедицинских технологий

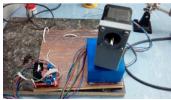
- На одно исследование требуется небольшое количество крови (0,45 мл.)
- Не требует химических реагентов и реактивов
- В большинстве случаев полностью заменяет проведение дорогостоящих лабораторных коагуляционных тестов
- Не требует специальных условий и дополнительного оборудования; может работать в операционной, в палате у постели больного — POCT (Point-of-Care-Test)

Научный руководитель:

Губарев Федор Александрович, ТПУ, Исследовательская школа химических и биомедицинских технологий, к.ф.-м.н., доцент

Прототип коллаборативного робота-манипулятора с интегрированным техническим зрением


Цель проекта


Проектирование и изготовление прототипа коллабративного робота-манипулятора с интегрированным техническим зрением, предназначенного для сферы услуг.

Описание и характеристики

Прототип робота-манипулятора, оснащенный 3-мя подвижными звеньями, приводимыми в движение с помощью nema 17 и плат arduino nano захватом и техническим зрением, осуществляемым с помощью веб-камеры и платы arduino.

Коллаборативный робот-манипулятор предложено использовать в новой среде – во взаимодействии с человеком. Поскольку он используется с человеком в сфере услуг, то возникла необходимость в интегрированном техническом зрении и защите человека от робота, что и было разработано.

Автор проекта:

Сушков Артём Александрович, Томский Физико-Технический лицей

Научный руководитель:

Васильев Иван Викторович, ТПУ, руководитель ФабЛаба

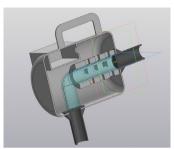
Антибактериальный полупроводниковый источник излучения

Цель проекта

Развитие имеющегося научного задела до стадии готовности к практическому применению: технологии дезинфекции и контроля наличия микроорганизмов в воде; конструкции инсектицидного облучателя от насекомых.

Характеристики

(полупроводникового устройства дезинфекции воды)


- Скорость дезинфекции воды не менее 10 м³/ час.
- УФ диоды должны иметь спектр бактерицидного излучения в диапазоне (250 285) нм.
- УФ диоды должны быть смонтированы на печатную плату с высокой теплопроводностью не менее **30 Вт/м*К.**
- Печатная плата с УФ диодами должна быть защищена от проникновения воды кварцевым стеклом, конструкция должна быть герметичной и обеспечивать степень защиты IP 68 в соответствии с **ГОСТ 14254-96.**
- Потребляемая электрическая мощность не более 1.5 кВт.
- Макет Устройства предназначен для работы с водой, отвечающей следующим требованиям: СанПин 2.1.4.1074-01, СанПин 2.1.5.980-00 и МУК 4.3.2030-05 по физическим и химическим показателям.
- Коэффициент пропускания водой УФ-лучей не менее 60%.
- Эффективная доза УФ-облучения не менее 25 мДж/см³.

Авторы проекта:

Научный руководитель:

Шардина Алена Олеговна, Михальченко Татьяна Сергеевна, Юлдашова Лола Шухратжоновна, студенты ТУСУРа

Солдаткин Василий Сергеевич, ТУСУР, к.т.н., доцент каф. РЭТЭМ

Установка для испытания на работоспособность систем силовых агрегатов транспортных и самоходных машин

Цель проекта

Повышение периода безотказной работы гидравлических систем силовых агрегатов за счет проверки показателей их работоспособности на различных скоростных и нагрузочных режимах.

Характеристики

- Габаритные размеры 650×470×1010
- Масса без рабочей жидкости 19,8 кг
- Диапазон измеряемой температуры гидравлической жидкости 40...120°С
- Диапазон регистрируемого рабочего давления 0...25 Мпа
- Изменяемый объемный расход гидравлической жидкости 0...100 л/мин
- Объем гидросистемы установки 80 л
- Давление срабатывания предохранительного клапана 26 Мпа

Преимущества

- Мобильность установки
- Нет необходимости подключения к электрической сети
- Испытания проходят без снятия с машины

Автор проекта:

Научный руководитель:

Мещеряков Михаил Юрьевич, аспирант ТПУ

Алушкин Тимофей Евгеньевич, ТСХИ – филиал ФГБОУ ВО Новосибирского ГАУ к.т.н., доцент

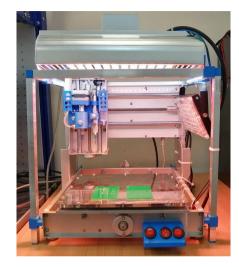
3D-принтер для изготовления многослойных печатных плат

Цель проекта

Разработка 3D-принтера для изготовления многослойных печатных плат с использованием технологии послойного нанесения и отверждения электропроводящих и диэлектрических материалов.

Характеристики

Разработки:

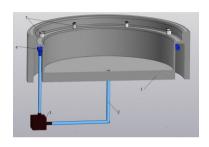

- Изготовление односторонних и многослойных печатных плат
- Способом нанесения паст является комбинация нескольких модулей дозаторов (шнековый механизм, позволяющий прецизионно дозировать проводящие пасты и поршневой или пневматический для нанесения диэлектрических паст)
- Способ отверждения **ИК, УФ светоспекание**
- Диаметр сопла дозатора: от 200 мкм
- Точность позиционирования по осям X, Y, Z: не более **± 30 мкм**

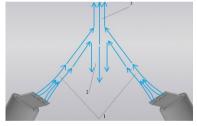
Печатных изделий:

- Минимальная ширина дорожки: от **400 мкм**
- Зазор между дорожками: от **400 мкм**
- Толщина слоя: от 50 мкм
- Адгезия к подложке: не менее 4 Н/мм кв

Преимущества (в сравнении с аналогами)

- Площадь рабочей поверхности больше
- Сокращение времени отверждения паст
- Изготовление без непосредственного участия пользователя и без потребности в трафаретах
- Экологичность


Фонтан с применением кумулятивного эффекта


Цель проекта

Разработка конструкции фонтана, в котором применяется гидродинамическая теория кумулятивного эффекта для демонстрации такого физического явления, как кумуляция и повышения зрелищно-эстетического эффекта, а также экономичного использования объемов водных и электрических ресурсов.

Описание

вода из резервуара, расположенного под чашей-бассейном, поступает в стоящий на дне резервуара насос и под давлением поднимается по шлангам, после вода поступает в средства для выброса воды в виде сопл. При соударении две изначальные струи, выходящие из сопл, имеющие прямоугольное сечение и находящиеся под углом относительно друг друга, создают кумулятивный эффект, который выражается в создании двух струй: восходящей струи, обладающей большей скоростью по сравнению с изначальными струями, исходящими из сопл, и песта, обладающим меньшей скоростью по сравнению с восходящей струёй. При помощи давления, которое регулируется насосом, можно задавать скорости для изначальных струй, тем самым создавать пульсирующий эффект создания струеборазования, которое делится на восходящую струю и пест.

Преимущества

- ▶ Не существует предела скорости истечения струй
- Затрачивается меньший объем воды
- Не имеется ограничения в количестве исходящих струй

 Идея использования гидродинамической теории кумулятивного эффекта в конструкции фонтана является нововведением в области декоративно-архитектурного искусства

Авторы проекта:

Кирюхина Валерия Александровна, Нестерова Алена Алексеевна, студенты НГТУ-НЭТИ

Научный руководитель:

Гуськов Анатолий Васильевич, НГТУ-НЭТИ, зав. кафедрой Газодинамических импульсных устройств, д.т.н., доцент

Беспроводная система спортивного хронометража на основе фотоэлектрического переключателя

Описание и характеристики

Система представляет из себя программноаппаратный комплекс, состоящий из следующий блоков (модулей): «Старт», «Финиш» и «Табло».

Дополнительные элементы (механический и фотоэлектрический переключатели) осуществляют регистрацию старта и финиша. После срабатывания механического переключателя на блок «Старт», «Финиш» и «Табло» передаются данные о начале отсчета времени посредством радио-модулей. После регистрации фотоэлектрическим переключателем финиша на все модули системы передается сигнал и таймер останавливается. Далее все данные собираются, обрабатываются, анализируются и в удобном для восприятия виде выводятся на электронные табло.

Точность отсчета времени определяется точностью и стабильностью частоты кварцевого резонатора платы аппаратного комплекса. Погрешность частоты с учетом температурной нестабильности не превышает 50 ppm (± 0,00005 %).

Преимущества (в сравнении с аналогами)

Научный руководитель:

- ▶ Модульность (позволяет оперативно трансформировать или и/или масштабировать систему)
- ▶ Программная независимость блоков (позволяет реализовывать различные решения регистрации данных (ис-пользование в качестве базы данных ПО смартфона, планшета, ПК или отдельного устройства)
- Аппаратная независимость модулей, которая определяет низкую себестоимость комплекса

Авторы проекта:

Бодренин Виктор Евгеньевич, Щукин Александр Викторович, студенты ТУСУРа

Перин Антон Сергеевич, ТУСУР, к.т.н., доцент каф. СВЧ и КР

Устройство диагностики психофизиологических параметров на основе микроконтроллерной платформы Arduino

Цель проекта

Создание компактного устройства, которое могло бы контролировать психофизиологические параметры человека при воздействиях внешних окружающих факторов, и в случае чего, предостеречь от опасности. Также развить скорость реакции, координации движения и др.

Описание

Конструктивное исполнение может быть корпусным или каркасным. Основной каркас тренажёра соответствует общепринятым эргономическим параметрам. Корпус не имеет травмирующих элементов. Каркас имеет возможность изменения геометрии конструкции.

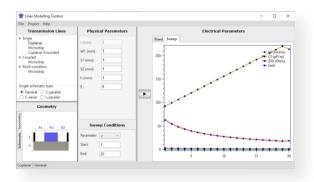
Датчики с сигнализаторами могут устанавливаться в произвольных местах каркаса, загораться последовательно по одному или одновременно по два или три в соответствии с программой упражнений, причём световые сигнализаторы загораются в хаотичном порядке, что исключает возможность определения следующего хода.

Дистанционное отображение результатов и корректировка тренировочной или реабилитирующей

программы. Наличие встроенных индикаторов хода выполнения тренировки и результатов. Миниатюрные датчики, контролируют физическое состояние человека во время выполнения задания и посылают данные на монитор.

Характеристики

- Напряжение питания: **сеть 220 В** или автономное от батарей или аккумуляторов с напряжением 6 В.
- Масса: не более 10 кг.
- Стоимость: **не более 100 000 руб.** Подобные импортные тренажёры стоят от 250 000 до 550 000 руб.


Авторы проекта:

Научный руководитель:

Разработка инструмента моделирования распределённых высокочастотных компонентов для новых радиоэлектронных систем

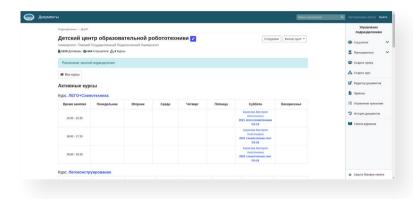
Характеристики ПО

- Относительно малое время расчета (1 120 сек)
- Высокая точность расчета сложных структур (5 10%)
- Высокая точность расчета простых структур (1 2%)
- Количество связанных микрополосковых линий (n > 2)
- Возможность учета ширины моделируемой линии (t > 0)
- Возможность расчета несимметричных связанных линий

Преимущества

- Использование метода численных конформных преобразований вместо метода моментов, что позволяет ускорить расчеты
- Введение редуцирующих разрезов
- Возможность учета толщины линии
- Отечественная разработка

В дальнейшем планируется:


- ▶ Реализация построения графиков S-параметров
- Расширение набора моделируемых структур не менее, чем до 10
- Реализация синтеза некоторых распределенных структур
- Расширение возможности синтеза направленного ответвителя и мостов на несимметричных связанных линиях различных (в том числе «неклассических») типов: противонаправлнного; сонаправленного и транснаправленного

Авторы проекта:

Автоматизация документооборота в организациях дополнительного образования детей

Описание

«Система управления документами» — это вебприложение написанное на язы-ке программирования Python и веб-фреймворке Django. При создании использовались следующие технологии: СУБД PostgreSQL, Django RestFramework, Django QR, Bootstrap 4, JavaScript, jQuery.

Цель проекта

Практическое решение проблемы документооборота в организациях дополнительного образования детей, путем создания удобного сервис-приложения, позволяющего объединить в одном месте все необходимые инструменты для ведения и контроля образовательного процесса внутри организации.

Преимущества

▶ Главное преимущество системы формирование готовых шаблонов документов через встроенный wysiwyg редактор

А также:

- Цена ниже рыночной
- Быстрая установка системы
- Простота использования
- Автоматизированный журнал посещаемости
- Электронное расписание
- Формирование отчетов по оплатившим

Автор проекта:

Научный руководитель:

Коробко Андрей Сергеевич, студент ТГПУ

Газизов Тимур Тальгатович, ТГПУ, начальник УРИСЭД, профессор, д.т.н., доцент

Устройство для аэрозольного напыления

Цель проекта

спроектировать и создать аэрозольный принтер для реализации технологических решений в микроэлектронике. На данный момент разработан и изготовлен макет устройства для аэрозольного напыления.

Описание

Устройство характеризуется новизной, что дополнительно обеспечивают стабильность и фокусирование струи. При контакте газа и чернил образуется аэрозоль. Наличие газа между струей аэрозоля и соплом позволяет минимизировать риск засорения. Струя аэрозоля остается сфокусированной на расстоянии вплоть до 5-15 мм от сопла, что позволяет наносить чернила на трехмерные основания.

Технически это может быть реализовано перемещением печатающей головки по трем осям (x,y,z) и наклоном основания по двум осям. После нанесения чернил производится УФ, ИК или термическая сушка в зависимости от материалов чернил и основания.

Преимущества

- Экологически чистый метод изготовления трехмерных электронных структур в масштабах длины до 10 мкм
- ▶ Не требует применения вредных химических веществ
- Обеспечивает высоту нанесения до 15 мм, что позволяет печатать на сложных 3D-поверхностях

Автор проекта:

Жаворонков Дмитрий Александрович, Типсина Анна Андреевна, студенты ТУСУРа

Научный руководитель:

Туев Василий Иванович, ТУСУР, д.т.н., профессор, заведующий кафедры РЭТЭМ

Инструмент визуализации сквозного расчета технологической линии карботермического синтеза на базе программного комплекса КОД ТП

Цель проекта

Разработка инструмента получения и визуализации результатов сквозного расчета технологических переменных линии КТС на базе программного комплекса КОД ТП.

Описание

Инструмент визуализации разрабатывался на базе программного комплекса КОД ТП в среде QT. Разработанное ПО имеет возможность обработки различных режимов работы с учетом простоя и неполадок оборудования, переработок и недоработок продукции, и формирует соответствующую документацию для анализа возможностей оптимизации режимов работы линии.

Исходя из требований к ПО и требований инженерной психологии, для режима «работа», подразумевающего непрерывную работу оборудования, выбрана индикация зеленым цветом, для режима «простой» – желтый, «неполадок» – красный цвет. По результатам работы ПО пользователь может получить документацию, соответствующую целям применения программы. Предусмотрена возможность просмотра общих результатов работы линии с помощью отдельной вкладки меню «Показать результат».

Преимущества

- Универсальности применения (нет необходимости корректировки алгоритмов расчета)
- **Быстрое формирование** отчетных документов по работе линии
- **Возможность применения в условиях длительной эксплуатации** с учетом внештатных ситуаций

Автор проекта:

Научный руководитель:

Степанченко Елена Константиновна, ТПУ, ИЯТШ, аспирант

Ливенцов Сергей Николаевич,ТПУ, ИЯТШ, д.т.н., профессор, заведующий лабораторией НОЛ ЭАФУ

Препарат для лечения заболеваний дистального отдела конечностей у крупного рогатого скота

Цель проекта

Создание нового инновационного препарата и разработка способа лечения коров с поражением дистального отдела конечностей.

Описание

В разрабатываемом препарате йод находится в свободной форме. Используе-мая форма йода в препарате не способна обжигать ткани, нетоксична, но со-храняет высокую бактерицидную активность, что позволяет применять его как антисептическое средство. Благодаря полимерной молекуле, йод проникает глубоко в рану, в воспаленные ткани. Осуществляется разрушение мембранных структур и блокирование биокаталитических процессов в микробных клетках.

Подобранное соотношение компонентов в составе препарата обеспечивает равномерное высвобождение активного йода, оказывая при этом пролонгиро-ванное антисептическое, дезинфицирующее и анальгетическое действие.

По результатам проведенных испытаний состава нового препарата установлена высокая его терапевтическая эффективность при лечении коров с поражением дистального отдела конечностей.

Средняя длительность лечения больных коров составляет 6,5 дней, а кратность применения препарата — 2 раза.

Преимущества

- Высокая бактерицидную активность и высокую терапевтическая эффективность
- Дешевизна: затраты на лечение одного животного составляют на 100-150 руб., что ниже по сравнению с известными препаратами.

Автор проекта:

Комаров Владимир Юрьевич, ФГБОУ ВО Орловский ГАУ, доцент кафедры анатомии, физиологии и хирургии

Разработка способа контроля дозовых нагрузок при облучении мелких лабораторных животных в рамках доклинических исследований

Цель проекта

Разработка экспериментального образца фантома мелких лабораторных животных, изготовленного посредством применения технологий трехмерной печати, для контроля дозовых нагрузок в рамках доклинических исследований.

Описание

Дозиметрические фантомы мелких лабораторных животных изготовлены посредством применения технологий быстрого прототипирования на основе томографических данных грызунов.

Гетерогенность тканей и органов обеспечена с помощью применения специально созданных филаментов с разной плотностью. Объемные цифровые модели тел фантомов мелких лабораторных животных разработаны с учетом необходимости размещения внутри образцов планируемого к использованию дозиметрического оборудования.

Преимущество

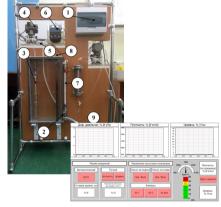
• Использование трехмерной печати. По сравнению с другими способами производства, технологии трехмерной печати требуют меньших затрат и являются гибкими по отношению к созданию деталей с анатомической точностью воспроизводящих внутренние структуры и формы тела грызуна, и к выбору материалов для имитации свойств тканей с точки зрения взаимодействия с ионизирующим излучением.

Авторы проекта:

Булавская А.А., ТПУ, м.н.с.; Милойчикова И.А., ТПУ, доцент, НИИ онкологии Томского НИМЦ РАН, медицинский физик; Григорьева А.А., ТПУ, аспирант; Зубкова Ю.А., ТПУ, магистрант; Бушмина Е.А., ТПУ, магистрант

Научный руководитель:

Стучебров С.Г., ТПУ, к.ф.-м.н., доцент ИШФВП ТПУ



Система контроля уровня и плотности растворов радиохимических производств

Описание

Прототип системы измерения и контроля уровня и плотности растворов ра-диохимических производств в емкостях ядерно-безопасного исполнения представлен в виде учебно-лабораторного стенда, состоящего из натурной модели емкости ядерно-безопасного исполнения, измерительного щупа и интеллектуального датчика дифференциального давления ДМ5017 (пр-во ОАО «Манотомь», г. Томск), в совокупности образующих прототип пьезометрического уровнемера-плотномера, а также контроллера ОВЕН ПЛК-154.

Характеристики

- Диапазон измерения уровня до 60 см
- Диапазон измерения плотности от 1000 до 3000 кг/м³
- Программная и визуальная составляющие выполнены в среде программирования СОDESYS 2.3. В системе представлена возможность проведения измерений как в ручном, так и в автоматическом режиме, а также архивация результатов.

Авторы проекта:

Кушков О.О., ТПУ, аспирант**; Сумин Г.В.,** ТПУ, студент**; Денисевич А.А.,** ТПУ, ассистент ОЯТЦ; **Ефремов Е.В.,** ТПУ, доцент ОЯТЦ

Преимущества

- **Электронный модуль удален на безопасное расстояние** от сенсора и не подвержен влиянию радиации и химически-активной измеряемой среды
- ▶ Малые габаритные размеры измерительной измерительной части пьезометрического уровнемера-плотномера (т. е. измерительного щу-па), позволяющие расположить его в геометрии емкости ядерно-безопасного исполнения

Научный руководитель:

Ливенцов С.Н., ТПУ, д.т.н., профессор ОЯТЦ ИЯТШ ТПУ, заведующий лабораторией НОЛ ЭАФУ

Система определения стресса на ранней стадии у детей с аутизмом

Цель проекта

Детектировать стресс в реальном времени, без очных походов к специалистам.

Описание

За считывание показаний датчиков кожно-гальванической реакции и вариабельности сердечного ритма отвечает браслет. А за отправку данных на облачный сервер отвечает док-станция, которая реализована в виде брелока. Данные с сервера анализируются нейронной сетью. Далее данные в удобном для восприятия виде показываются в приложениях на смартфон и компьютер (в разработке).

Преимущества

- Устройство не обязывает ребёнка носить смартфон, как реализовано во всех существующих смарт часах.
- Цвет устройства подбирается под тон кожи ребёнка с аутизмом.
- Анализ нескольких потоков данных для определения и отличения предвестников стресса. А в существующих смарт часах в действительности анализируется только изменения пульса с течением времени, что является совершенно не точным.
- **Самообучаемость системы.** Чем дольше пациент носит браслет, тем точнее определения предвестников стресса.

Авторы проекта:

Научный руководитель:

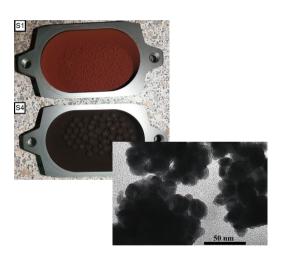
Трофимов Александр Сергеевич, Бирюков Олег Иванович, студенты НГТУ

Бизяев Алексей Анатольевич, НГТУ, старший преподаватель

Получение ультрадисперсного порошка магнетита на основе оксида железа методом механической активации

Описание и характеристики

Получение порошка магнетита осуществлялось путем механической активации исходного оксида железа (Fe2O3). Механическая активация порошка гематита осуществлялась с использованием высокоэнергетической шаровой мельницы Retsch Emax. Стаканы и шары диаметром 2 и 5 мм из нержавеющей стали.


режимы механической обработки в соответствии с техническими возможностями активатора: скорость вращения размольных стаканов в диапазоне 0-2000 об/мин, время механической активации 0-60 минут. 100% магнетитовой фазы удалось получить при режиме активации 2000 об/мин в течение 60 минут согласно данным

Были подобраны следующие

рентгенофазового и термического анализов.

Полученный порошок магнетита представляет собой отдельные частицы сферической формы в диапазоне 10-50 нм и скопления этих частиц в крупные агломераты в диапазоне 0.02-50 мкм.

Намагниченность такого порошка состав-ляет **60 (Гс*см3)/г.** Температура Кюри составила **~567 °С,** что хорошо коррелирует с литературными данными.

Преимущества

- ▶ Простой, дешевый и более экологически чистый метод механическая активация (по сравнению с химическими)
- **Ультрадисперсность** порошка и высокими значения намагниченности и температуры Кюри

Авторы проекта:

Елькин Владимир Денисович, ТПУ, аспирант; **Николаев Евгений Владимирович,** ТПУ, к.т.н., научный сотрудник

Научный руководитель:

Лысенко Елена Николаевна, ТПУ, д.т.н., заведующая проблемно-исследовательской лаборатории электроники, диэлектрики и полупроводников

Комбинированный светодиодные светильники с ИК обогревателем

Цель проекта

Развитие имеющегося научного задела до стадии готовности к практическому применению конструкции комбинированного светодиодного светильника для общего освещения и обогрева помещений.

Описание

Светодиодный светильник, содержащий кронштейн для крепления, арматуру с установленным инфракрасным обогревателем направленного действия, на котором расположено устройство электропитания и управления в виде съёмного модуля.

Отличается тем, что к арматуре по обеим сторонам от инфракрасного обогревателя, на расстоянии не менее десяти сантиметров расположены по меньшей мере по одному светодиодному модулю с герметичным корпусом и защитным стеклом, в корпусе расположены светодиодные ленты с низкой и высокой цветовой температурой, каждая из светодиодных лент и инфракрасный обогреватель электрически соединены устройством электропитания и управления с функцией управления температурой обогревателя, переключением светодиодных лент и регулировкой светового потока через мобильное приложение по Wi-Fi.

Характеристики

- Световой поток не менее 8478 лм
- Потребляемая мощность ИК обогревателем не более **600 Вт**
- Вес не более **2,5 кг**
- Обогрев площади 12 м² при высоте монтажа не более 3,5 м
- Дистанционное управление по сети Wi-Fi
- **Управление с мобильного** устройство через приложение
- Электропитание от сети переменного тока напряжением **220 В** и частотой **50 Гц**

Авторы проекта:

Фам Ми Хуэн, Мазеина Ангелина Андреевна, Егорова Евгения Леонидовна, Шнайдер Екатерина Васильевна, студенты ТУСУРа

Научный руководитель:

Солдаткин Василий Сергеевич, ТУСУР, доцент каф. РЭТЭМ, к.т.н.

Высоковольтный импульсный модулятор

Цель проекта

Разработка модулятора для формирования высоковольтных импульсов питающих электровакуумные СВЧ-приборы.

Характеристики

- Работа в наносекундном диапазоне
- Скважность импульсов до 500
- Напряжение питания блока управления +12 В
- Модулирующее напряжение до +600 В
- Выходная импульсная мощность до 10 кВт
- Габаритные размеры не более 210*120*80 мм
- Масса не более 1 кг

Преимущества

- **Упрощенная схемная реализация** (снижение себестоимости модулирующего устройства)
- Снижение массогабаритных показателей
- Возможность быстрой перестройки параметров

Авторы проекта:

Абдирасул уулу Тилекбек, Щегляков А.В., Алексеев Е. В., Жук Г.Г., аспиранты ТУСУРа; **Кречетов Д.С.,** студент ТУСУРа

Вид спереди

Вид сзади

Научный руководитель:

Убайчин А.В., ТУСУР, РТФ, каф. РСС, доцент, к.т.н.

USRP-радиометр

Цель проекта

Создание лабораторного макета микроволнового радиометра, позволяющего реализовать классические и новые системные и схемотехнические решения микроволновых радиометрических систем для исследования их динамических свойств, флуктуационной чувствительности, передаточной и других характеристик.

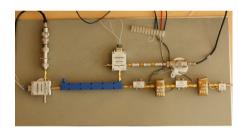
Описание

На текущем уровне исследовательской деятельности при осуществлении лабораторных или натурных экспериментов возникает необходимость полностью пересобрать макет. Применение программно-определяемых радиосистем позволяет упростить изучения и проведение сравнительного анализа различных схем микроволновых радиометров.

Характеристики

- 2 канала
- Диапазон частот: 1.2 ГГц 6 ГГц
- Шаг частоты: <1кГц
- Диапазон усиления: **0 дБ 37.5 дБ**
- Шаг усиления: 0.5 дБ
- Максимальная входная мощность: -15 дБм
- Показатель шума: 5 дБ 7 дБ

- Максимальная мгновенная пропускная способность в реальном времени: 40 МГц
- Максимальная частота дискретизации: 200 Мвыб/с
- Динамический диапазон(sFDR): 88 дБ
- O3Y: **1024 M5**



Убайчин А.В., ТУСУР, РТФ, каф. РСС, доцент, к.т.н.

Авторы проекта:

Щегляков А.В., Абдирасул уулу Тилекбек, Жук Г.Г., Алексеев Е.В., аспиранты TVCYPa ; **Кречетов Д.С.,** магистрант TVCYPa

SibGel

Цель проекта

Создание биодеградируемых и экологически чистых гидрогелей для контролируемого выпуска воды и удобрений в почву.

Описание

Гидрогели представляют собой эластичные биополимеры, которым можно придавать любую форму и размер. Наиболее простой вид — круглые шарики. Цвет также может менять с помощью добавления фруоресцентных или пищевых красителей. SibGel имеют свойство высыхать, отдавая 95% воды, уменьшаясь в объеме, затем набухать под воздействием воды. Свойства эластичности и биодеградации изменяются в соответствии от концентрации добавленного сшивающего агента.

Преимущества

Несмотря на то, что полиакриламидные гидрогели на самом деле не считаются токсичными, коммерческие составы содержат остаточные количества акриламида— нейротоксического и канцерогенного вещества, вызывающего опасения по поводу возможного загрязнения почвы и пищевых продуктов. Следовательно, популярность биополимеров растет, потому что они экологически безопасны и биоразлагаемы, а также, как

правило, дешевле в производстве, чем синтетические материалы. А молочная сыворотка является интересным сырьем для создания гидрогелей, так как она состоит из глобулярных белков бета-лактоглобулина (около 65% масс.) и альфа-лактоглобулина (около 25% масс.), которые в первую очередь отвечают за способность гелеобразования, эмульгирования, пенообразования и гидратации.

Автор проекта:

Научный руководитель:

Хан Елена Алексеевна, аспирант ТПУ

Ди Мартино Антонио, ТПУ, Ph.D., доцент исследовательской школы химических и биомедицинских технологий

Электроды

Реконфигурируемые волноводные структуры оптоэлектронных устройств на основе электрооптических кристаллов

Цель проекта

Работа посвящена реализации реконфигурируемых волноводных структур с перестраиваемыми характеристиками гибридных и полностью оптических устройств оптоэлектроники и приборов фотоники на основе электрооптических кристаллов.

Характеристики

- Волноводные структуры регулярного и нерегулярного типа
- Поперечные размеры сформированных структур от нескольких десятков до единиц мкм
- Знакопеременный характер изменения показателя преломления
- Величина изменений показателя преломления: от минус 10-3 до плюс 10⁻³ (точность изменения показателя преломления 10-5)
- Пространственная модуляция параметров с периодичностью от одного до нескольких единиц мкм
- Срок эксплуатации в зависимости от свойств материала и требуемой конфигурации от долей секунды (для краткосрочных элементов оптической памяти) до нескольких лет (для связующих элементов и устройств управления оптическими сигналами)

Подложка

Разветвитель

Преимущества

Соединитель

Не требует специальных атмосферных условий. Для реализации необходимо только наличие:

- простой оптической системы, включающей в себя милливаттный источник лазерного излучения, фокусирующую линзу, электрооптических кристалл;
- трехосевой высокоточный позиционер (для формирования требуе-мой топологии устройства внутри подложки).

Автор проекта:

Научный руководитель:

Безпалый Александр Дмитриевич, аспирант ТУСУРа

Мандель Аркадий Евсеевич, ТУСУР, д.ф.-м.н., старший науч-ный сотрудник, профессор каф. СВЧиКР

Разработка методики выращивания острого перца на ситиферме

Цель проекта

Разработать технологию выращивания сортов острого перца «Жёлтый гриб», "Royal Black" и «Ха-банеро» на сити-ферме.

Описание

В работе использовалась ситиферма компании IFarm, состоящая из активной гидропонной установки открытого типа с системой капельного полива. В качестве субстрата использовался субстрат на основе стружки кожуры кокосовых орехов, для полива использовалась экспериментальная питательная среда, предоставленная IFarm, полив и освещение осуществлялись автоматически.

Преимущества

- Минимальное количество исследований по теме
- Уникальная питательная среда
- Максимально оптимизированная технология
- Возможность максимального упрощения логистики в случае начала массового производства
- Быстрая окупаемость
- Сохранность вкусовых качеств продукции

Автор проекта:

Научный руководитель:

Степанова Маргарита Алексеевна, МАОУ Школа «Перспектива»

Плотников Евгений Владимирович, МАОУ Школа «Перспектива», учитель биологии

Промышленное культивирование грибов медицинского назначения

Цель проекта

Создание технологии получения плодовых тел грибы медицинского назначения Lentinula edodes (Шиитаке).

Описание

- ▶ **1 этап:** культивирование маточного мицелия на питательной среде «Тсуджия-ма» (14 дней)
- **2 этап:** заражение зернового субстрата мицелием
- > 3 этап: заражение блока с опилочным субстратом

Преимущество

Данная технология получения плодовых тел является уникальной для Томской области, ввиду сложности биологического цикла.

Авторы проекта:

Зорина Татьяна Денисовна, Павлюченко Екатерина Васильевна МАОУ Школа «Перспектива»

Научный руководитель:

Плотников Евгений Владимирович, МАОУ Школа «Перспектива», учитель биологии

Индукция ризогенеза in vitro у эксплантов земляники

Цель проекта

Получение эксплантов из вегетативных частей значимых сортов земляники садовой.

Технология:

- 1. Сборка усов земляники сорта Delissimo hydro с ситифермы
- 2. Удаление ненужной зеленой массы растения и корней. Стерилизация эксплантов
- 3. Работа в ламинарном боксе: полоскание простерилизованных эксплантов. Выделение растительных почек
- **4. Высаживание почек** на гормональную питательную среду Мурасиге-Скуга.
- **5. Адаптация к питательной среде.** Ризогенез растений
- **6. Клонирование** укоренившихся растений в условиях in vitro
- 7. Адаптация микроклонов к условиям ситифермы

Отличительные черты

- Введение в культуру непопулярных в Томске и в России сортов.
- Подбор питательной среды, использование фитогормонов
- Клонирование растений полученных из почек

Преимущества

Данный проект экономически не обрабатывался, но может быть перспективным с точки зрения введения в культуру сортов, устойчивых фузариозу, вирусным и бактериальным инфекциям, а так же имеющим длительный период вегетации, короткий срок начала цветения и длительный период плодоношения.

Авторы проекта:

Ивасенко Мария Денисовна, Малиновский Александр Александрович, МАОУ Школа «Перспектива»

Научный руководитель:

Плотников Евгений Владимирович, МАОУ Школа «Перспектива», учитель биологии

Технология культивирования баклажанов в условиях ситифермы

Цель проекта

Создание технологии культивирования баклажанов на аэропонной установке.

Описание

Проект можно разделить на 6 этапов:

подбор сорта баклажанов, стерилизация семян для посева, посев семян в культуру in vitro, адаптация, вегетация, цветение, плодоношение.

Семена были подобраны в соответствии с мнением специально обученного лица.

Стерилизация семян: в ламинарном боксе путём промачивания семян раствором состоящим из: спирта, перекиси, воды. Далее высаживание в питательную среду Мурасиге-Скуга. Стерилизация питательных сред была сделана за счет специальных учреждений.

Затем процесс посева и введение в культуру in vitro, представляет собой стерильную обособленную от окружающей среды, благоприятную зону для растений. Позже происходит адаптация растений для внешней среды обитания, где присутствуют грибки и прочие влияющие на рост факторы, температура в лаборатории поддерживалась в диапазоне 27-29 градусов, влажность 50%, концентрация питательной среды для баклажа-

нов варьируется между 1200-1600 ppm, искусственное освещение настроено на обычный световой день.

Аэропонная установка, распыляющая растворённые в воде питательные среды, производит аэрозольное орошение корней каждые 1.5 часа, что способствует росту.

Вегетация происходила с изменённым питательным раствором составленным под потребности растения. Далее фаза цветения, в ходе исследования было установлено, что дополнительное опыление пропорционально влияет на количество завязавшихся плодов, для цветения подобрана соответствующая питательная среда. Когда растение готово плодоносить, питательная среда снова подбирается под нужды растения и эти баклажаны подвергаются дальнейшему анализу.

Автор проекта:

Научный руководитель:

Малиновский Александр Александрович, МАОУ Школа «Перспектива»

Плотников Евгений Владимирович, МАОУ Школа «Перспектива», учитель биологии

NAUKA O+

Выставка научных достижений молодых ученых

Poct JP 2021

